References

Baer, F. (2000). Numerical Weather Prediction. Advances in Computers, 52, 91–157.

Baldick, R. (2012). Spatial prediction of wind farm outputs using the Augmented Kriging-based Model. 2012 IEEE Power and Energy Society General Meeting, 1–7. doi:10.1109/PESGM.2012.6345117

Beccali, M., Cirrincione, G., Marvuglia, a., & Serporta, C. (2010). Estimation of wind velocity over a complex terrain using the Generalized Mapping Regressor. Applied Energy, 87(3), 884–893. doi:10.1016/j.apenergy.2009.05.026

Binning empirical semivariograms. (2013). Retrieved October 01, 2014, from http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Binning_empirical_semivariograms/0031000000mm000000/

Biswas, A., & Si, B. C. (2013). Model Averaging for Semivariogram Model Parameters.

Cellura, M., Cirrincione, G., Marvuglia, a., & Miraoui, a. (2008). Wind speed spatial estimation for energy planning in Sicily: A neural kriging application. Renewable Energy, 33(6), 1251–1266. doi:10.1016/j.renene.2007.08.013

Chawathe, S. (2007). Segment-based map matching. Intelligent Vehicles Symposium, 2007 IEEE, 1190–1197. doi:10.1109/IVS.2007.4290280

Hardin, E. (2013). Simulating Wind Over Terrain : How to Build an OpenFOAM Case from GRASS GIS Digital Elevation Models. Retrieved from http://www4.ncsu.edu/~ejhardi2/OF_GRASS_Geom.pdf

Lang, C. (2014). Kriging Interpolation. Retrieved September 30, 2014, from http://www.nbb.cornell.edu/neurobio/land/OldStudentProjects/cs490-94to95/clang/kriging.html

Liu, H., Shi, J., & Erdem, E. (2010). Prediction of wind speed time series using modified Taylor Kriging method. Energy, 35(12), 4870–4879. doi:10.1016/j.energy.2010.09.001

Martin, J. C., Milliken, D. L., Cobb, J. E., Mcfadden, K., & Coggan, A. R. (1998). Validation of a Mathematical Model for Road Cycling Power. Journal of Applied Biomechanics, 14, 276–291.

O’Sullivan, D. & Unwin, D. J. (2010). Geographic Information Analysis. Hoboken, New Jersey: John Wiley & Sons.

Robert, S., Foresti, L., & Kanevski, M. (2013). Spatial prediction of monthly wind speeds in complex terrain with adaptive general regression neural networks. International Journal of Climatology, 33(7), 1793–1804. doi:10.1002/joc.3550

Schneiderbauer, S., & Pirker, S. (2011). Determination of open boundary conditions for computational fluid dynamics (CFD) from interior observations. Applied Mathematical Modelling, 35(2), 763–780. doi:10.1016/j.apm.2010.07.032

Tapia, X. P. (2009). Modelling of wind flow over complex terrain using OpenFoam. University of Gävle. Retrieved from http://hig.diva-portal.org/smash/get/diva2:228936/FULLTEXT01

Yaseen, M., Hamm, N. a. S., Tolpekin, V., & Stein, A. (2013). Anisotropic kriging to derive missing coseismic displacement values obtained from synthetic aperture radar images. Journal of Applied Remote Sensing, 7(1), 073580. doi:10.1117/1.JRS.7.073580

Leave a Reply